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Abstract—In 2016, 2017, and 2018 at the IEEE Con-
ference on Computational Intelligence in Games, the
authors of this paper ran a competition for agents
that can play classic text-based adventure games. This
competition fills a gap in existing game AI competitions
that have typically focussed on traditional card/board
games or modern video games with graphical interfaces.
By providing a platform for evaluating agents in text-
based adventures, the competition provides a novel
benchmark for game AI with unique challenges for
natural language understanding and generation. This
paper summarises the three competitions ran in 2016,
2017, and 2018 (including details of open source imple-
mentations of both the competition framework and our
competitors) and presents the results of an improved
evaluation of these competitors across 20 games.

[. INTRODUCTION

Before the widespread availability of graphical displays,
text adventures were one of the few game genres that
owed their existence solely to computing. The first text
adventure was COLOSSAL CAVE (also known simply as
ADVENTURE), written in 1976 by Will Crowther for the
PDP-10 mainframe [1]. With the advent of home computing
in the late 1970s, CoLOSSAL CAVE and other games such
as ZORK were enjoyed by many. The majority of early
text adventures used a narration-action loop that accepted
simple commands of the general form VERB or VERB NOUN
(e.g. ‘look’, ‘go west’, ‘take box’) via console input.
In response to such commands, the programs provided a
description of the immediate environment, e.g.

‘You are in an open field on the west side of
a white house with a boarded front door. There
is a small mailbox here.’

Early adventures typically involved exploration and trea-
sure hunting, but more sophisticated narratives emerged
in the 1980s (e.g. in the INFOCOM range of games). An
active “Interactive Fiction” community still exists, using
powerful natural language authoring tools such as INFORM
[2] to create new and diverse titles.

Despite the continued existence of this community,
one might ask what a competition concerned with text-
based games has to offer, given that there are numerous
competitions involving modern graphics-based games. The
underlying motivation can be traced back to an early
divergence between AI philosophy and practice. John
McCarthy proposed the well-known “Monkey and Bananas
Problem” in 1963 [3]: given a room containing a chair,
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a stick and a bunch of bananas hanging on a hook, the
monkey’s task is to find a sequence of actions that results
in acquiring the bananas. McCarthy made a key distinction
between the physical feasibility of the task (i.e. is there a
physically realisable sequence of actions that achieves the
goal?) and its epistemic feasibility (i.e. can the knowledge
that a particular action even exists be efficiently derived?)
[4]. We claim that recent game Al competitions have tended
to de-emphasise the epistemic aspect, instead working in
domains that are strongly operationalised. What this means
is that the set of actions instantaneously available have
been constrained to be knowable in advance. Of course,
the space of plans for lengthy sequences of actions is still
combinatorially huge, but the key question of how to
derive and represent knowledge about an uncertain world
is circumvented.

The hypothesis motivating the Text-Based Adventure
AT competition is that the determination of relevant
affordances (i.e. the set of behaviors that are possible
in a given situation [5]) from a non-trivial environment
is likely to require more than a good choice of credit
assignment strategy, even if the latter would suffice in
an operationalised domain. This then re-emphasises the
following research questions:

e In the absence of operationalisation, what are the
minimum priors (in terms of domain knowledge) that
are required for success (even for a “toy” domain such
as “Monkey and Bananas”)?

o How do model-free and model-based approaches com-
pare? How can any difficulties with the former in this
domain better inform such approaches in general?

In operationalised environments, the goal is to learn

a policy mapping from game states to actions, where
the set of available actions is predetermined. In a non-
operationalised environment, the set of available actions
first has to be generated as a function of previously
encountered game states. A policy mapping that works with
these generated actions can then be learned subsequently.
This function space is in general vastly larger than in the
operationalised case.

It could be argued that text adventure domains are
also “operationalised”, since the space of possible inputs is
discrete. However, this does not take into account the fact
that effective action requires a mapping from game output
space to player input space for which random input text
will be vastly less likely to have any effect than randomly
pressing buttons in a first-person shooter, or randomly
making legal moves in chess.

This article is structured as follows: Section II discusses
related work on natural language processing in game-
playing. Section IIT describes the competition framework.



Section IV outlines the agents submitted to the 2016, 2017,
and 2018 competitions. Section V describes an improved
evaluation methodology based on the experience gained
from the 2016 and 2017 competitions. Section VI presents
new results from applying this methodology to the existing
agents, which we hope can serve as a baseline for future
research, and Section VII concludes.

II. RELATED WORK

The essential task of a competitor in the Text-Based
Adventure AT Competition is to create an agent that can act
effectively in a partially-observable environment, perceived
via a number of short natural language descriptions of the
agent’s surroundings. Historically, work in the general area
of natural language processing and narrative representation
has mirrored the overall tendency for AI methods to
move from symbolist to data-intensive methods such as
Neural Networks, Reinforcement Learning or Monte Carlo
Tree Search. In the 1970s and 1980s there was significant
interest in symbolic representations of natural language
and narrative, via semantic nets, frame systems and
scripts, using approaches such as Case-Based Reasoning
[6] and Abstraction Units [7]. More recently, there has
been a tendency for a directly symbolist approach to
Natural Language Processing to be eclipsed by more
overtly numerical methods, including “Bag of Words” based
approaches such as Latent Semantic Analysis [8], with
the goals of approaches such as [7] being revisited via
contemporary corpus-based techniques [9].

With specific reference to work on games, Branavan et al.
[10] applied Monte Carlo Tree Search to the strategy game
C1viLIZATION II. The value function was approximated
via a neural net and included linguistic features extracted
from the game manual, providing a significant improvement
against the game’s built-in opponent. Narrowing our focus
further to Interactive Fiction, Al can play many roles in
this genre of games [11] with this competition’s focus being
specifically on game playing Al. Previous work has often
attempted to reduce the challenge of text-based games in
order to make them more feasible domains for existing Al
methods - such as for example by making the game output
its environment descriptions not in natural language, but in
first-order logic that can be directly stored and processed
by an agent [12], [13]. Prior to our first competition in 2016,
the previous work of greatest relevance in playing natural-
language games was by Narasimhan et al [14], in which
Deep Reinforcement Learning was used to jointly learn
state representations and action policies in two Multi-User
Dungeons (MUDs) - a specific type of text-based adventure
game. The approach was demonstrated to outperform the
use of both bag-of-words and bag-of-bigrams for state
representations. This paper and early discussions with
the first two authors helped shape the first competition
we ran in 2016, which attempted to engage the game Al
community more broadly in the challenging topic of text-
based adventure Al by providing an accessible framework
and regular schedule for agent evaluation via competitions.

III. COMPETITION FRAMEWORK

Our framework for evaluating a software agent’s ability
to play text-based adventures! is based on the ZPLET [15]
Java interpreter for the widely-used Z-Machine format [16],
created by Infocom in 1979. The framework is defined in
terms of a traditional agent-based perspective [17]. The
console input and Z-Machine output text of ZPLET are
redirected to an Agent interface, to be implemented by
competitors. This interface consists of a single action
method with a string argument. At each turn, the narrative
text (typically at most a paragraph in length) that would
otherwise be presented to the human player is provided as
this argument. For example:

‘You are standing at the end of a road before
a small brick building. Around you is a forest.
A small stream flows out of the building and
down a gully’.

The action method then returns a string describing the
action that the agent wishes to perform. A default Rando-
mAgent is provided, with an action implementation that
simply ignores the input text and chooses uniformly from
8 basic commands: ‘north’, ‘south’, ‘east’, ‘west’,
‘verbose’ (switching some games to a mode where they
always output full descriptions of locations even if the agent
has been there before), ‘take all’, ‘yes’, and ‘no’.

By default, agents can be developed in Java?, but to
facilitate the development and implementation of agents in
other programming languages an additional agent, IOAgent,
is provided. This agent’s action method forwards the
narrative text to the application’s output stream and then
returns the next line of text from the application’s input
stream. This allows entrants to interface external agents
by starting the implementation with the IOAgent and
then interacting with that process’s 10. A random agent
implemented in Python 3.5 is provided to demonstrate how
this can be implemented.

Additionally, there are 3 predefined actions which are
meant to help train an agent and may be accessed by
the IOAgent through hard-coded string equivalents. These
are Quit, which quits the running game; Restart, which
restarts both the running game and the current agent; and
SoftRestart, which restarts the running game but not the
current agent.

IV. COMPETITORS

The first Text-Based Adventure AI Competition was
announced on 15 May 2016 and ran later that year at
the IEEE Conference on Computational Intelligence in
Games after closing for entries on 31 August 2016. The
competition ran again in 2017, officially being announced
on 8 March 2017 and closing for entries on 18 July 2017.
In 2018, the competition was officially announced on 3

1The Text-Based Adventure Al framework is available at https:
//github.com/Atkrye/IEEE-CIG- Text- Adventurer- Competition

2A  tutorial for  getting started with  developing
Java  agents is available  at: http://atkrye.github.io/
IEEE- CIG-Text- Adventurer- Competition/tutorial-java,/



May 2018 and the closing for entries was 20 July 2018.
In the following subsections we will summarise the four
agents submitted to these competitions, three of which
have been made available as open source by the respective
participants. Future papers based on our framework can
use these agents as baselines for evaluation and comparison.

A. BYUAGENT 2016

BYUAGENT 2016° [18] interacts with a text-based
adventure by generating commands combining nouns
extracted from the game text with verbs drawn from a pre-
defined set. More complex commands, such as propositional
structures, may also be generated. Generated commands
are attempted exhaustively and those commands which
successfully produce a change in the game environment are
stored. When the agent encounters a game environment
where generated commands fail to produce a change,
these stored commands may then be attempted, effectively
implementing a simple form of one-shot learning.

The set of verbs the agent uses is drawn from the
Wikipedia text corpus. The 1000 most commonly-appearing
verbs were extracted, and then filtered by human play-
testers according to their usefulness on a variety of text-
based adventure games in order to produce a smaller set
of approximately 100 verbs. A small number of additional
human-selected verbs, including basic navigational com-
mands, are also included.

Commands are generated using the word2vec [19] algo-
rithm to produce vector embeddings of verbs and the nouns
extracted from the game text. An “affordance vector”,
derived as the average vector difference in a known set of
verb-noun pairs, is used to find a set of verbs which “match”
a given noun. Additional hard-coded behaviour, such as
periodic ‘look’ and ‘inventory’ commands to observe
the game state, and ‘get all’ whenever entering a new
location, aids the agent in interacting with the game.

B. GOLOVIN (2017)

The GOLOVIN* agent [20] uses command generators
to propose a non-empty set of commands for a given
game environment by inserting nouns taken from the
game’s narrative text into “command patterns” - a set
of 250,000 verb phrases extracted from various game
walkthroughs, tutorials, and raw narrative text. To do
this, a word2vec model trained on 3000 fantasy books
is used to propose synonyms for each noun using n-
best cosine similarity. Commands are then proposed by
finding command patterns containing these synonyms and
replacing that synonym with the original noun. Each
generated command is associated with a weight, consisting
of multiple factors including the cosine similarity between
the noun and its synonym’s word2vec vector representation
and a value given by a LSTM neural network operating

3The BYUAgent 2016 [18] is available open source at: https://
github.com/danielricks/BYU- Agent-2016

4The Golovin agent [20] is available open source at: https://github.
com/Kostero/text rpg ai

on words [21]. Finally, a roulette wheel selection (based
on the commands’ associated weights) is used to choose a
command from the generated set.

When a command is attempted and the game description
remains the same, that command is assumed to have failed
and is blacklisted for that game location until the agent
observes a change in its inventory.

Five distinct command generators exist for different
purposes. Each of these generators is fired, in this order,
until a non-empty set of commands is proposed:

1) Battle mode. This command generator, specifically
designed to aid the agent in combat scenarios, is
limited to a subset of around 70 “fighting” com-
mand patterns containing one of the verbs ‘attack?’,
‘kill’, ‘fight’, ‘shoot’ or ‘punch’. This genera-
tor does not blacklist “failed” commands, as combat
may require multiple iterations, and is only fired if a
“fighting” command has been used previously.

2) Gathering items. This command generator is fired
whenever the agent enters a new area, proposing
‘take’ commands for nouns in the area’s narrative
text.

3) Inventory commands. Once a noun has been success-
fully taken by the gathering items generator, this
generator may fire, generating commands under the
usual approach using only that noun’s synonyms.

4) General actions. This command generator proposes
commands in the usual approach using nouns from
the game environment.

5) Exploration. A small fixed set of movement com-
mands are proposed when an area has been exhausted
by other command generators. Once the agent moves
to a new area, a map graph storing locations and the
commands which move between them is updated.
If an area has unexplored directions, then those
directions are proposed at random. Otherwise a
route to a “promising destination”, measured by
its distance away and the proportion of possible
commands left unattempted, is attempted.

C. CARL (BYUAGENT 2017)

The CARL agent uses affordance detection to suggest
commands based on objects observed in a game’s narrative
text. Additionally, when an action is perceived to change
the game state, that action is stored in memory so that it
can be repeated during subsequent encounters with that
state.

States are identified and stored by converting the indi-
vidual sentences of the narrative text into skip-thought
vectors [22]. The vector of each sentence is then classified
as either state-information or not based on its proximity
to the vector representations of a set of labelled example
sentences. Those sentences which are identified as state-
information are concatenated and hashed to create a unique
identifier of the current state for the action recollection
strategy described above.

Commands are then generated by first extracting nouns
from those sentences identified as state-information. The



vector representations of these nouns, generated by a
word2vec model, trained on the Wikipedia text corpus,
are manipulated using linear algebra to identify likely
“matching” verbs. The best candidate verb-noun pairs are
attempted first, with the search broadening to less “well-
matching” pairs should these fail to change the game’s state.
A complementary algorithm also attempts to generate
prepositional combinations.

D. NAIL (2018)

The NAIL (“Navigate Acquire Interact Learn”) agent®
consists of multiple independent modules which compete
for control of the agent. Each module has a specific
purpose; the main modules are the Examiner, Interactor
and Nawvigator modules. These modules are responsible
for identifying relevant objects in the current location,
interacting with identified objects, and navigating to a
new location, respectively. Additionally, there are further
modules including specific modules for yes-no questions
and for the acquisition of objects. Each module observes
changes in the game and in each step of the game reports
how ‘eager’ it is to assume control of the agent, with the
most eager module in any step gaining full control.

Any change in the game’s state is used to update
a knowledge graph, which all modules have access to.
This knowledge graph tracks known objects, interactions,
locations and connections between locations, and serves
as a compact representation of the world state. Addition-
ally, the knowledge graph stores all previously attempted
interactions to avoid retrying failed interactions.

Most modules use pre-defined sets of common commands
to interact with the game. The Interactor module deviates
here, constructing verb-noun phrases to interact with
objects observed in the game. This module employs a LM-
Based language model to assign probabilities to different
verb-object combinations, the most promising of which are
then executed. When there are no promising verb-object
combinations, the Interactor falls back to a predefined set
of verbs which are attempted in combination with observed
objects from the game.

The NAIL agent uses a wvalidity detector to determine
whether its actions are having an effect on the game.
A word-embedding-based text classifier [23] is used to
establish whether a game’s response to a given action
either “failed” (had no effect) or “succeeded” (had an
effect). Validity detection is needed e.g. to decide whether
an object is relevant in the Ezaminer module, and to
prevent incorrect updates to the knowledge graph when
an action “failed’.

V. EVALUATION METHODOLOGY

The agents submitted to the 2016 and 2017 competitions
were evaluated on a single game developed specifically for
the competition in order to provide a gradually increasing
level of difficulty. The game was written by a game designer

5The NAIL agent is available open source at: http://aka.ms/nail

without a formal education in Al, with the intention of
creating a game unbiased towards any existing approaches
to game playing Al. The winner in both years was BYU-
AGENT 2016.

In hindsight, we realise the evaluation via a single game
was flawed. Due to the mechanics of text-based adventures,
if an agent is unable to solve a single puzzle, it is often
unable to progress further in the game. This became
obvious in the 2017 competition, where both the GOLOVIN
and CARL agents failed to score a single point because they
could not solve the first puzzle. We had assumed the first
puzzle to be simple, but our assessment of the complexity
of text-based puzzles was entirely subjective. Moreover, the
relative performance of agents in this competition compared
to their performance as reported in the competitors’ own
publications [18], [20] suggest that our game was biased
towards certain types of agents (e.g. BYUAGENT 2016).

This motivated the need for an evaluation across multiple
games in order to fairly judge agents capable of general
text-based adventure game playing®. The advantages of
Als that can play multiple games instead of a single game
have frequently been promoted by the research community
[24], [25], and there is a growing trend towards recognising
the advantages of evaluating agents on commercial games
not specifically designed to challenge Als as well [26], [27].
Specifically, by evaluating on multiple games instead of a
single test game, we avoid the tendency of competitors to
overfit to the single test game; creating a contribution to
that specific game instead of to Al research more broadly.
Furthermore, the use of commercial games avoids bias in
the game design towards specific Al methods the game
designer may wish to promote if the game is created
specifically to test AIl. By instead using games created
for human gameplay, this bias is presumed to be removed
or at least averaged out over multiple games.

In the 2018 competition, we therefore switched to a more
general evaluation framework using a test set of 20 different
text adventures, which we downloaded from the web. The
games were written in different styles by different authors,
and some had been previously either commercially released,
or submitted to interactive fiction writing competitions.
There is no overlap between our test set and the training
set used by [18], [20]. Unlike some of the games in this
training set, all games in our test set provide a numerical
score that allows for a fine-grained measurement of game
playing performance. The precise actions for which a player
gets rewarded with points, such as the successful solving of
puzzles or winning of fights, are determined by the authors
of the individual games. We expect that this removes the
biases mentioned above — both regarding our own style
of writing, as well as our own style of scoring text-based
adventure games. In addition, agents that fail at solving
the first puzzle of any given game will still be able to make
progress on other games. Agents can be evaluated on their
performance given a fixed number of game steps (calls to

6The authors of GOLOVIN and the BYU agents themselves seem
to have already agreed on a training set of 50 text-based adventure
games for algorithm development and testing [18], [20].



the action method) per game, and their evaluation can be
averaged over multiple runs with different random seeds
in order to reduce the impact of run-to-run variance.

The following section presents a novel evaluation of all
agents submitted to previous competitions using our new
framework, with the aim of more accurately determining
which agent is currently the best general text adven-
ture game playing Al. We evaluated BYUAGENT 2016,
GoroviN, CARL (BYUAGENT 2017), and NAIL on each
of the 20 test games for 1000 game steps. This is to make
our results comparable to those in [18], [20] with the same
number of steps. The results reported here are averages
over 10 such runs for GOLOVIN and NAIL; unfortunately,
we were only able to do one run for each of the BYU
agents (discussion below). In order to give an indication of
how agent performance can scale with the number of game
steps, NAIL and GOLOVIN were additionally tested in 10
runs with 100 steps each, and GOLOVIN was also tested in
10 runs with 10,000 steps each on all 20 games.

The evaluation metrics are the average percentage of
points an agent achieved over all games and test runs, and
the percentage of games in which an agent achieved any
points, averaged over test runs. The first metric is our
primary evaluation metric, and is expressed as an average
percentage instead of an average number of points due to
the large differences in the maximum number of points
achievable in each game. 1 point out of a maximum of 10
should count for more than 1 point out of a maximum
of 500. The secondary metric gives an impression of the
generalizability of current text-based adventure Als, and
can be used as a tie breaker in case two or more agents
perform equally well according to the first metric. In case
of two agents performing the same on both metrics (which
has not happened so far), we would use an additional
tie breaking criterion, preferring the agent that is using
the least prior domain knowledge of text-based adventure
games.

VI. RESULTS

The BYUAGENT 2016 was the strongest agent in our
first competition in 2016. In 2017, CARL was the strongest
agent, improving on both BYUAGENT 2016 and GOLOVIN
on the primary metric. As of 2018, NAIL is the strongest
text-based adventure game playing agent. It is a clear
improvement over all previously submitted agents in both
evaluation metrics.

Our new testing framework also enables us to conduct
more in-depth comparisons of different agents’ performance
over time. Three such experiments have been done so far.
The additional experiments with GOLOVIN and NAIL at
100 time steps per game demonstrate that NAIL does not
start out stronger than GOLOVIN in the first 100 time steps
(at least not with respect to the primary metric), but makes
more effective use of additional time when scaling up to the
1000 time steps required by the competition. Additionally,
the experiment running GOLOVIN for 10,000 time steps
per game shows that NAIL and CARL are stronger
than GOLOVIN even if GOLOVIN is given a ten-fold time

Agent % completion % non-zero

M SD M SD
BYUAGENT 2016 0.79 - 15 -
GOLOVIN 1.45 0.09 31 3.94
CARL (BYUAGENT 2017)  1.59 - 30 -
NAIL 2.56 0.33 45.5 2.84
GOLOVIN (100 steps) 0.99 0.24 17.5 3.53
NAIL (100 steps) 0.95 0.19 26 2.11
GOLOVIN (10k steps) 1.44 0.10 325 4.25
RandomAgent 1.66 0.15 34 211

TABLE I: Performance on the test set of 20 games in (unless
stated otherwise) 1000 time steps per game. “% completion” is
the average score percentage an agent achieved over all games
and runs; “% non-zero” is the percentage of games in which
an agent achieved any score, averaged over all runs. Standard
deviations (SD), whereever given, refer to 10 runs over all games.
Where they are not given, only 1 run could be completed.

advantage. This is particularly impressive considering that
NAIL and CARL are arguably using less domain-specific
knowledge than GOLOVIN, e.g. GOLOVIN’s “battle mode”
[20]. It is possible that this domain-specific knowledge
overfits to the training set used by the authors, and
generalizes less well to the games in our test set. However,
NAIL and CARL do require much longer thinking time
than GOLOVIN, and we can confirm the competitors’ claim
[20] that GOLOVIN is an improvement over BYUAGENT
2016. The general level of text adventure Als has increased
from every competition to the next so far.

The last row of Table I shows the performance of our
RandomAgent, described in Section III. Only with NAIL
in 2018 has the first agent managed to beat it. This is
probably due to its set of pre-specified commands being
extremely simple and generalizing very well across games
- changing locations and trying to pick up all possible
objects is typical player behavior in text-based adventure
games. Again, overfitting to their own training sets might
have been the problem for our competitors before NAIL,
using too many time steps on larger vocabularies and more
intricate strategies that do not work in as many different
game situations. We are optimistic for future agents now
that the RandomAgent has been convincingly surpassed.

Considering the overall results, it is clear that all agents
are facing major unsolved challenges. Even the strongest
agent NAIL can currently only complete about 2.6% of a
given test game on average, and gets no points at all in
more than half of them. Many of the points achieved are
given by the respective game just for starting, for initially
submitting the ‘get all’ command in order to pick up
any suitable objects in the first scene, or for walking into
one of the compass directions. Despite some progress from
2016 to 2018, no agent is anywhere close to completing
a single game. The problems of course include the very
difficult scientific questions of how to extract information
from natural language text, and how to map it to effective
action in turn described in natural language, possibly via



an intermediary model of the agent’s environment. For ex-
ample, the BYUAGENT 2016 is unable to deal with games
that require giving prepositional commands [18] such as
‘give dagger to wizard’, or inferring the correct term
for manipulable objects (such as requiring the command
‘get shiny object’ after describing “something shiny”).

Looking at the design of all agents, they appear to
share a common assumption that all actions which lead
to new states are beneficial. Therefore these agents are
essentially overcoming the challenge of sparse rewards from
the environment by following an innate behaviour akin to
work on curiosity as an intrinsic motivation [28] or novelty
search [29]. Whilst these approaches have shown broad
applicability, it is feasible to construct a pathological text-
adventure game where such strong exploration would be
punished, and an agent only rewarded for reaching a small
subset of states. In the future hopefully more goal-oriented
agents will be developed, such that good and bad state
changes can be distinguished and maybe even predicted.

From analysing the gameplay logs we can also conclude
that more technical challenges are common to most agents
as well, namely the correct parsing of game output, and
differentiating between in-game and out-of-game messages
to the player. All games conform to the type of narration-
action loop typical for text adventure games; but as they
are originally written for human players, many games
require a greater amount of flexibility than currently
supported by Al agents. As an example, many games begin
with an out-of-game message such as ‘Would you like
to resume a saved game (Y/N)7’. Reacting to these as
if they were in-game narratives often leads to complete
failure at the game. Some games respond to the input
‘hint’ with an in-game hint regarding the puzzle at hand,
from which the agents can successfully retrieve information
such as nouns and verbs to try in future actions; however,
some games respond to ‘hint’ by opening an out-of-
game multiple-choice menu, which agents currently cannot
handle. Furthermore, some agents have trouble identifying
the score they have achieved, because they are expecting it
in a slightly different format from what the game at hand
returns. The game could for example respond to the input
‘score’ with ‘If you were to stop now, you would
score 50 points out of a maximum of 1500’ instead
of the expected ‘You have so far scored 50 out of a
possible 1500, in 23 turns’. GOLOVIN for example
stops playing if it cannot identify the game score for 10
successive attempts — however, it aborts many games with
valid but unexpected score formats, while playing others
that actually do not keep a score but return a message in
the expected format because the author did not care to
remove this functionality (e.g. ‘You have so far scored
0 out of a possible O, in 23 turmns’).

The creativity of interactive fiction writers can lead to
even greater challenges in parsing and/or scoring, but
along with scoreless games these challenges have been
removed from the test set for the foreseeable future.
For example, games can have a non-numerical ranking
(“captain”) instead of a score; they can use made-up words

or languages (even for reporting the score); or they can only
reward points after the player has finished significant parts
of the game, giving no clear indication that the current
score is zero before those milestones are reached.

Additionally, as the 2016 and 2017 competitions were not
originally planned to use a test set of multiple games, we did
not require functionality from the participants that would
make (repeated) testing on such a set feasible or convenient.
While GoLOVIN for example recovered gracefully from
failed interactions with individual games by reporting
a result of zero points, the BYU agents frequently did
not start at all on a given game, or even froze the OS.
In combination with parsing and scoring problems, this
made it necessary to manually re-start and supervise the
agents on each game, which is why we can only report
the result from a single run per test game in Table I. In
future competitions, we will improve our descriptions of
the necessary functionality, probably setting time limits
per time step as well, to allow for a more streamlined, fair,
and reliable agent evaluation.

Finally, we note that the published version of BYU-
AGENT 2016 [18] as well as some prior work [14] use
reinforcement learning, playing a given game many times
and gradually improving performance by learning suc-
cessful commands for the game at hand. So far however,
our competition has not provided a learning track, and
therefore required the submission of fully trained agents,
or agents capable of one-shot learning within a single
game-playing episode. This does not fully reflect the
capabilities of some agents. Therefore, we are considering
the introduction of a learning track. In addition to the
improvements for future competitions described above,
this track could profit from the lessons learned by the
broader reinforcement learning community on the topic of
evaluating and comparing agents [30], [31]. For example,
(1) reporting agent’s average performance at several fixed
stages of training to enable comparison of both final
performance and rate of learning; (2) running multiple
repeats to evaluate variance in learning performance due
to the known issues of robustness and reproducibility
with modern reinforcement learning algorithms; and (3)
requiring all entrants to open source agent submissions and
fully document hyper-parameter settings.

VII. CONCLUSION

Contemporary machine learning techniques have recently
had many successes in game-playing domains such as Go
that are traditionally hard for AI [32]. While it is clear
that games provide an artificially restricted domain, we
claim in this article that there is a tendency for game Al
domains to be chosen such that the applicable operators
are known in advance. This bias effectively means that
the epistemological problems of Al, first raised by John
McCarthy [4], [33], are neglected. Broadly, such problems
are concerned with extracting salient knowledge in non-
trivial environments. This is unfortunate, since they are
highly relevant for many real-world applications of natural
language processing: The BYU team, for example, has



recently acquired funding from Amazon as part of the
“Alexa Prize”; a challenge to create social bots that can
converse coherently and engagingly with humans. They
informed us “Some of the research that went into CARL
was foundational in our approach to creating [the Alexa
competitor] EVE. So it might please you to know that the
CIG competition is having ripples with pretty wide impact”
(Nancy Fulda, personal communication, Feb. 6, 2018).

The Text-Based Adventure AI Competition arose out
of a desire to re-emphasise these neglected aspects of Al
and motivate further experimentation. To date, mostly
model-free approaches have been used as predicting the
state transitions that might be caused by future actions
proves to be very challenging. GOLOVIN’s exploration
command generator and NAIL’s knowledge graph have
made some first steps, but there is still much room for
improvement, and we are far from a consensus on how
to optimally tackle the related problems. We hope that
the community will perceive the challenge offered by this
competition as both long-standing and meaningful, and
respond with new approaches that push the envelope of
existing wisdom regarding both hard problems and good
solution mechanisms.
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